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Fairness Criterion

Some fairness criterion involve studying the internal workings of the algorithm.
E.g., the algorithm cannot be based on certain features.



Fairness Criterion

Some fairness criterion involve studying the internal workings of the algorithm.
E.g., the algorithm cannot be based on certain features.

Statistical Criteria of Fairness: Criteria that require that certain relations
between predictions and actuality be the same for each of the groups in question.

The criteria can be evaluated without actually looking at the inner workings of
the algorithm, which may be proprietary or otherwise opaque. Instead, we just
have look at the results—what the algorithm Predicted and what actually
happened.
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Binary predictions: 12 classified as positive (Pos); 8 classified as negative (Neg)
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Binary predictions: 12 classified as positive (Pos); 8 classified as negative (Neg)
Predict Risk Scores: 0 < g1, 92,93, 11, », 3 <1

Actuality: 3 classified as Pos are misclassified, 1 classified as Neg is misclassified



Fairness (1)

Calibration Within Groups: For each possible risk score, the (expected)
percentage of individuals assigned that risk score who are actually positive is the
same for each relevant group and is equal to that risk score.



Fairness (1)

Calibration Within Groups: For each possible risk score, the (expected)
percentage of individuals assigned that risk score who are actually positive is the
same for each relevant group and is equal to that risk score.

The idea is that fairness requires a given risk score to “mean the same thing” for
each relevant group. We want the assignment of a given risk score to have the
same evidential value, regardless of the group to which the individual belongs.
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Fairness (2)

Equal Positive Predicative Value: The (expected) percentage of individuals
Predicted to be positive who are actually positive is the same for each relevant

group.

Equal Negative Predicative Value: The (expected) percentage of individuals
Predicted to be negative who are actually negative is the same for each relevant

group.



Fairness (2)

Equal Positive Predicative Value: The (expected) percentage of individuals
Predicted to be positive who are actually positive is the same for each relevant

group.

Equal Negative Predicative Value: The (expected) percentage of individuals
Predicted to be negative who are actually negative is the same for each relevant

group.

The idea is that fairness requires a prediction of positive to mean the same thing,
or to have the same evidential value, regardless of the group to which the
individual belongs (similarly for a prediction of negative).
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Fairness (3)
Equal False-Positive Rates: The (expected) percentage of actually negative
individuals who are falsely predicted to be positive is the same for each relevant
group.

Equal False-Negative Rates: The (expected) percentage of actually positive
individuals who are falsely predicted to be negative is the same for each relevant

group.



Fairness (3)

Equal False-Positive Rates: The (expected) percentage of actually negative
individuals who are falsely predicted to be positive is the same for each relevant

group.

Equal False-Negative Rates: The (expected) percentage of actually positive
individuals who are falsely predicted to be negative is the same for each relevant

group.

The idea is that fairness requires individuals from different groups who exhibit
the same behavior to, on balance, be treated the same by the algorithm in terms
of whether they are Predicted to be positive or negative. It would be unfair, for
instance, if individuals from one group who are actually negative tended to be
Predicted to be positive at higher rates than actually negative members of the
other group.
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Fairness (4)

Balance for the Positive Class: The (expected) average risk score assigned to
those individuals who are actually positive is the same for each relevant group.

Balance for the Negative Class: The (expected) average risk score assigned

to those individuals who are actually negative is the same for each relevant group.

These are generalizations of the previous two conditions from the case of binary
predictions to the case of risk scores, and are motivated in the same way.
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Average Risk Scores
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Brian Hedden has recently presented a counterexample which seems to
simultaneously refute 10 of the 11 most influential criteria from the literature on
algorithmic fairness.

As a result, it is far from clear exactly which criteria you should employ when
evaluating the fairness of the suspect lending algorithm.

In this article, | will present, motivate and defend a novel statistical criterion of
algorithmic fairness, that is, both resistant to Hedden's counterexample, and well
equipped to accurately diagnose unfairness when one does not have access to the
internal workings of the algorithm.
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Calibration Within Groups (Strong): For each possible risk score, the
(expected) percentage of individuals assigned that risk score who are actually
positive is the same for each relevant group and is equal to that risk score.

14



Calibration Within Groups (Strong): For each possible risk score, the
(expected) percentage of individuals assigned that risk score who are actually
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Calibration Within Groups (Weak): For each possible risk score, the
(expected) percentage of individuals assigned that risk score who are actually
positive is the same for each relevant group.
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Calibration Within Groups (Strong): For each possible risk score, the
(expected) percentage of individuals assigned that risk score who are actually
positive is the same for each relevant group and is equal to that risk score.

Calibration Within Groups (Weak): For each possible risk score, the
(expected) percentage of individuals assigned that risk score who are actually
positive is the same for each relevant group.

Like the strong formulation, the weak formulation requires that every possible
risk score should have the same evidential import for all relevant groups in order
for the algorithm to count as fair.
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Example

If 9 percent of the white drivers who are assigned a risk score of 10 percent
actually get involved in accidents, then the strong formulation will deem the
algorithm to be unfair, even if it is also the case 9 percent of those drivers from
all other relevant groups who are assigned a risk score of 10 percent get involved

in accidents.
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Weak vs. Strong Calibration

Suppose that there are two rooms, A and B, containing 10 people each.
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Suppose that there are two rooms, A and B, containing 10 people each.

» All people are assigned 2 coins, the first of which is a fair coin with a known
bias of 1/2. The second coins have unknown biases that are not available to
the algorithm.
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Weak vs. Strong Calibration
Suppose that there are two rooms, A and B, containing 10 people each.

» All people are assigned 2 coins, the first of which is a fair coin with a known
bias of 1/2. The second coins have unknown biases that are not available to
the algorithm.

> As it turns out, the biases of the second coins are all 3/5.

» The algorithm aims to predict whether both of a subject’s two coins will
land heads when flipped. Since the biases of the second coins are not
available to the algorithm, it operates by assuming that all the second coins
have a uniform bias of 1/2 and then assigns each subject a risk score equal
to the products of the biases of their two coins, i.e., 1/2x1/2 = 1/4.
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Weak vs. Strong Calibration

| think this is obviously fair. The algorithm assigns everyone from both groups
the same risk score on the basis of the same evidence. And indeed, the algorithm
trivially satisfies the weak formulation of calibration within groups.
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| think this is obviously fair. The algorithm assigns everyone from both groups
the same risk score on the basis of the same evidence. And indeed, the algorithm
trivially satisfies the weak formulation of calibration within groups.

» The only risk score assigned by the algorithm is 1/4 and the proportion of
Room A people assigned this score whose coins both land heads is 3/10,
which is equal to the proportion of Room B people assigned the score whose
coins both land heads.
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Weak vs. Strong Calibration

| think this is obviously fair. The algorithm assigns everyone from both groups
the same risk score on the basis of the same evidence. And indeed, the algorithm
trivially satisfies the weak formulation of calibration within groups.

» The only risk score assigned by the algorithm is 1/4 and the proportion of
Room A people assigned this score whose coins both land heads is 3/10,
which is equal to the proportion of Room B people assigned the score whose
coins both land heads.

» However, the algorithm also violates the strong formulation of calibration
within groups, since the expected proportion of people from either room
assigned the risk score 1/4 who actually tossed two heads (3/10) is not
equal to that risk score.
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Weak vs. Strong Calibration

This example shows that only the weaker formulation of calibration within groups
is plausibly a necessary condition for algorithmic fairness:
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This example shows that only the weaker formulation of calibration within groups
is plausibly a necessary condition for algorithmic fairness:

» While | agree that the above algorithm is non-ideal in the sense that it
systematically underestimates the risk of agents tossing two heads, | also
think it is clear that this shortcoming is not helpfully described as
“unfairness.”
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Weak vs. Strong Calibration

This example shows that only the weaker formulation of calibration within groups
is plausibly a necessary condition for algorithmic fairness:

» While | agree that the above algorithm is non-ideal in the sense that it
systematically underestimates the risk of agents tossing two heads, | also
think it is clear that this shortcoming is not helpfully described as
“unfairness.”

» If one insists on calling this kind of shortcoming “unfair,” then it is clear
that we need to distinguish between two conceptions of algorithmic
unfairness: one that applies to uniform failings of accuracy that do not track
divisions between groups, and one that manifests itself in inequitable
differences in the way that different groups are treated by the algorithm.
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Calibration is not Necessary

Age

Credit score

Base rate

Risk score

Young
Young
Old
Old

Good
Bad
Good
Bad

3
80
3
80
1
40
1
20

1
20
L
10
1
20
1
10

» On average, 3/80 young drivers are involved in accidents, regardless of their
credit scores, while 1/20th of older drivers with bad credit scores are
involved in accidents, compared to only 1/40th of those with good credit

Scores.
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Calibration is not Necessary

Age Credit score Base rate Risk score
Young Good = =
Young Bad & &

1 1
Old Good ? 21—0
old Bad 5 &

» The algorithm simply assigns risk scores of 1/20 to all drivers with good
credit scores, and 1/10 to drivers with bad credit scores.



Calibration is not Necessary

Age Credit score Base rate Risk score
Young Good 2 =

3 1
Young Bad ? 1170
Oold Good ? 21—0
Oold Bad = L

» For simplicity, assume that the algorithm is applied to an equal number of
drivers from each of the four profiles, which implies that young drivers and
old drivers both have an overall base rate of 3/80.



Calibration is not Necessary

Age Credit score Base rate Risk score
Young Good 3 =
Young Bad % %
Old Good ? ?
old Bad = in

» The algorithm violates calibration within groups, since the base rate for
young drivers with a risk score of 1/20 is 3/80 while the base rate for old
drivers with the same risk score is 1/40, which means that the risk score
1/20 has different evidential implications for young drivers than it does for
older drivers.



» However, it seems wrong to say that the algorithm treats older drivers
unfairly in comparison to young drivers.
The algorithm does not systematically treat younger drivers more favourably
than older drivers or vice versa. On balance, it gives them equal treatment,
evinced by the fact that the average risk score for both groups is 3/40,
equal to half the overall base rates for both groups.
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» However, it seems wrong to say that the algorithm treats older drivers
unfairly in comparison to young drivers.

The algorithm does not systematically treat younger drivers more favourably
than older drivers or vice versa. On balance, it gives them equal treatment,
evinced by the fact that the average risk score for both groups is 3/40,
equal to half the overall base rates for both groups.

Calibration within groups says that the algorithm treats old drivers unfairly
in comparison to young drivers, but that is clearly not correct in this case.
Neither group is systematically preferred to the other.
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It is important to draw a distinction between two distinct possible interpretations
of the calibration within groups criterion.

1. One can interpret the criterion as a diagnostic tool for identifying whether
an algorithm treats some specific groups unfairly in comparison to some
others.
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It is important to draw a distinction between two distinct possible interpretations
of the calibration within groups criterion.

1. One can interpret the criterion as a diagnostic tool for identifying whether
an algorithm treats some specific groups unfairly in comparison to some
others. On this interpretation the criterion can be used to check whether the
pricing algorithm above treats young drivers unfairly in comparison to old
drivers, for instance. And as we've just seen, the criterion gives an intuitively
incorrect verdict here, since it identifies age bias where there does not seem
to be any.
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It is important to draw a distinction between two distinct possible interpretations
of the calibration within groups criterion.

1. One can interpret the criterion as a diagnostic tool for identifying whether
an algorithm treats some specific groups unfairly in comparison to some
others. On this interpretation the criterion can be used to check whether the
pricing algorithm above treats young drivers unfairly in comparison to old
drivers, for instance. And as we've just seen, the criterion gives an intuitively
incorrect verdict here, since it identifies age bias where there does not seem
to be any.

2. One can interpret the criterion as a more coarse grained diagnostic tool that
simply helps to identify whether the algorithm is unfair overall. On this
interpretation, the algorithm is unfair just in case it is possible to identify
any groups with respect to which the calibration criterion is violated.

21



| am skeptical of the idea that we should treat all violations of calibration as
conclusive evidence of injustice.
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| am skeptical of the idea that we should treat all violations of calibration as
conclusive evidence of injustice.

For instance, one can imagine an algorithm, that is, calibrated with respect to
age, gender, race, education, income, nationality, zip code, sexual orientation and
political and religious beliefs, but that is not calibrated with respect to whether
someone lives in an odd or even numbered house.
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| am skeptical of the idea that we should treat all violations of calibration as
conclusive evidence of injustice.

For instance, one can imagine an algorithm, that is, calibrated with respect to
age, gender, race, education, income, nationality, zip code, sexual orientation and
political and religious beliefs, but that is not calibrated with respect to whether
someone lives in an odd or even numbered house.

In this case, it might be right to say that the algorithm treats even dwellers
unfairly in comparison to odd dwellers, but that does not seem like a good reason
to simply dismiss the algorithm as “unfair.”

22



Clearly, we are more interested in evaluating statistical markers of “significant”
group distinctions (e.g., race, gender, age, etc.) that track group distinctions
with important social, political, economic and historical origins and ramifications.

Indeed, it seems unrealistic to expect our algorithms to be even roughly
calibrated with respect to every possible group distinction, which suggests that
the most we can reasonably demand is that they be calibrated with respect to all
“significant” group distinctions.
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But then we run straight back into the counterexample outlined above.

One could certainly make a case for the claim that the group distinction
young/old is a significant one, while the distinction young & good credit/ young
& bad credit/old & good credit/old & bad credit is not (if one is not convinced
by this case, replace credit score with something more trivial).
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But then we run straight back into the counterexample outlined above.

One could certainly make a case for the claim that the group distinction
young/old is a significant one, while the distinction young & good credit/ young
& bad credit/old & good credit/old & bad credit is not (if one is not convinced
by this case, replace credit score with something more trivial).

This then suggests that the algorithm is actually fair after all, since it seems to
be fair with respect to age, which is the only significant group
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This gives two choices:
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This gives two choices:

1. Argue that all group distinctions are equally relevant to an algorithm's
fairness, in which case they avoid the counterexample (because the more
fine grained distinction is treated as relevant to the algorithm’s fairness,
which implies that the algorithm is unfair), at the cost of placing unrealistic
and unreasonable demands on predictive algorithms, or
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This gives two choices:

1. Argue that all group distinctions are equally relevant to an algorithm's
fairness, in which case they avoid the counterexample (because the more
fine grained distinction is treated as relevant to the algorithm’s fairness,
which implies that the algorithm is unfair), at the cost of placing unrealistic
and unreasonable demands on predictive algorithms, or

2. Argue that only “significant” group distinctions really matter when it comes
to an algorithm's fairness, in which case the counterexample still stands
(because the more fine grained partition is not treated as relevant to the
algorithm’s fairness, which means that the algorithm is fair even though
calibration is violated).
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Imagine a bank that wants to discriminate against black loan applicants, and
suppose that black applicants tend to live in zip codes with higher than average
default rates, although, within any given zip code, black applicants actually have
the same average default rate as other applicants from the same area.
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Imagine a bank that wants to discriminate against black loan applicants, and
suppose that black applicants tend to live in zip codes with higher than average
default rates, although, within any given zip code, black applicants actually have
the same average default rate as other applicants from the same area.

The bank can achieve its discriminatory agenda by assigning risk scores to
applicants based purely on their zip code, and ignoring other relevant factors like
income, credit history, and so on.

This is an idealized illustration of a real historical phenomena called “redlining,”

which lenders used to avoid giving mortgages to minority applicants in the 1930s.
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Redlining 1

Race Zip Credit Number Default rate Risk score
White TR10 Good 90 % i
White TR10 Bad 30 % i
White TR11 Good 40 1—10 %
White TR11 Bad 40 % %
Black TR10 Good 60 1—10 i
Black TR10 Bad 20 é i
Black TR11 Good 60 1_10 %
Black TR11 Bad 60 é %
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Redlining 1

Race Zip Credit Number Default rate Risk score
White TR10 Good 90 & 1
White TR10 Bad 30 l L
White TR11 Good 40 i 3
White TR11 Bad 40 é %
Black TR10 Good 60 5 1
Black TR10 Bad 20 t 1
Black TR11 Good 60 % 3
Black TR11 Bad 60 % 3

» There are two zip codes, TR10 and TR11.
» Blacks are a minority in TR10 but are a majority in TR11.
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Redlining 1

Race Zip Credit Number Default rate Risk score
White TR10 Good 90 i %
White TR10 Bad 30 ! 1
White TR11 Good 40 % %
White TR11 Bad 40 % %
Black TR10 Good 60 % i
Black TR10 Bad 20 % i
Black TR11 Good 60 % %
Black TR11 Bad 60 % %

» On average, applicants in TR10 have a lower default rate than those in

TRI11.

» The discriminatory algorithm assigns all applicants in TR10 a risk score of

1/4 and applicants in TR11 a risk score of 3/4.
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Redlining 1

Race Zip Credit Number Default rate Risk score
White TR10 Good 90 % 1
White TR10 Bad 30 % %
White TR11 Good 40 % %
White TR11 Bad 40 % %
Black TR10 Good 60 % i
Black TR10 Bad 20 L 1
Black TR11 Good 60 i 3
Black TR11 Bad 60 L 3

» For both zip codes, the proportion of black and white applicants with good
credit scores is the same (3/4 for TR10 and 1/2 for TR11), as is the
default rate (1/8 for TR10 and 3/20 for TR11).



Redlining 1

Race Zip Credit Number Default rate Risk score
White TR10 Good 90 i i
White TR10 Bad 30 ! 1
White TR11 Good 40 % %
White TR11 Bad 40 % %
Black TR10 Good 60 % i
Black TR10 Bad 20 % i
Black TR11 Good 60 % %
Black TR11 Bad 60 % %

» An applicant’s credit score is a perfect indicator of their true default risk, in

the sense that, regardless of their race and zip code, 20 percent of
applicants with bad credit scores go on to default, and 10 percent of
applicants with good credit scores do so.
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Redlining 1

Race Zip Credit Number Default rate Risk score
White TR10 Good 90 % 1
White TR10 Bad 30 % %
White TR11 Good 40 % %
White TR11 Bad 40 % %
Black TR10 Good 60 % i
Black TR10 Bad 20 L 1
Black TR11 Good 60 i 3
Black TR11 Bad 60 L 3

» By ignoring credit score and basing risk scores purely on applicants’ zip
codes, the algorithm seems to treat black applicants unfairly in comparison
to white applicants.



However, it is easy to see that the algorithm satisfies the weak formulation of the
calibration within groups criterion.
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