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Research on algorithmic fairness studies the prospects of unbiased assessment.
Bias in error rates is one form of bias, but not the only form and often considered
not the most important form. Can bias in error rates and other important forms
of bias be simultaneously eliminated?

One lesson that emerges from some of these studies is that eliminating one form
of bias can mean that it is impossible to eliminate another. Sometimes, then, we
face a conflict between eliminating different forms of bias.
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Bias in error rates is one form of bias, but not the only form and often considered
not the most important form. Can bias in error rates and other important forms
of bias be simultaneously eliminated?

One lesson that emerges from some of these studies is that eliminating one form
of bias can mean that it is impossible to eliminate another. Sometimes, then, we
face a conflict between eliminating different forms of bias.

Here, | argue that, not only do we face a conflict in eliminating different forms of
bias, we also face a conflict in eliminating one form of bias across different
groupings. Eliminating a certain form of bias across groups for one way of
categorizing people in a population can mean that it is impossible to eliminate
that form of bias across groups for another way of classifying them.



Rush T. Stewart (2022). Identity and the limits of fair assessment. Journal of Theoretical
Politics 2022, Vol. 34(3), pp. 415 - 442.



Setup
A single property y of interest.
Individuals in N either have property y or lack it: Y : N — {0,1}
Call a function h: N — [0, 1] an assessor.

For concreteness, interpret h(/) as the assessor's probability that i has property y.



Setup

The quantity P(Y = 1) = u, for example, is the proportion of people in N that
have property y, the prevalence of y in the population.

Call u the base rate for y in N.

Given a partition 77 = {Gy,..., Gy} of N, let P, = P(- | G). So,
P1(Y = 1) = p1 is the base rate for y in group 1 is 1 and P(h = 0.5) is the
proportion of people to which h assigns 0.5 in Gy, and so on.
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An assessor is (strongly) calibrated if

P(Y=1|h=p)=pforallpe[0,1] and k =1,2,..., m such that
Py(h = p) > 0.



Strong Calibration

An assessor is (strongly) calibrated if

P(Y=1|h=p)=pforallpe[0,1] and k =1,2,..., m such that
Py(h = p) > 0.

E.g., consider weather forecasting. Suppose that each day, a forecaster
announces a probability of rain for that day. The forecaster is calibrated if it rains
on 10% of the days she announces that it will rain with probability 0.1, and it
rains on 85% of the days she predicts rain with probability 0.85, etc.



Strong Calibration

If the assessor is calibrated, not only would it not be overconfident in one group
and underconfident in another, it would not be over- or underconfident in any
of its assessments.

When the assessor is calibrated, Kleinberg et al. write “we are justified in
treating people with the same score comparably with respect to the outcome,
rather than treating people with the same score differently based on the group

they belong to.”
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Predictive Equity

An assessor h satisfies predictive equity (also called weak calibration for
groups) for a partition 77 if

P(Y=1|h=p)=Pj(Y=1|h=p)forall G, G emn

Put another way, among people assigned the same assessment score, the
proportion of people who have property y is the same across all groups in the
partition.



Limitation Result

An assessor is perfect if h(i) = Y (i) for all i € N.
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Limitation Result

An assessor is perfect if h(i) = Y (i) for all i € N.

Observation 1. Let h be an assessor for N. The following are equivalent:
1. his calibrated for all binary partitions.
2. his calibrated for all partitions.

3. his perfect.

In other words, outside of the unrealistic case of perfect assessment, there will be
bias in confidence against some group. Observation 1 complicates any automatic
inference from failure of calibration for some group to intentional bias on behalf
of the assessor.

10



Limitation Result 2

An assessor h makes perfect distinctions if, for all i,j € N, Y (i) # Y())
implies that h(i) # h(j). So, for any score p, if h(i) = p and Y (i) = 1, then for
no individual j such that Y (j) = 0 is it the case that h(j) = p.
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Limitation Result 2

An assessor h makes perfect distinctions if, for all i,j € N, Y (i) # Y())
implies that h(i) # h(j). So, for any score p, if h(i) = p and Y (i) = 1, then for
no individual j such that Y (j) = 0 is it the case that h(j) = p.
Observation 2. Let h be an assessor for N. The following are equivalent:

1. h satisfies predictive equity for all binary partitions.

2. h satisfies predictive equity for all partitions.

3. h makes perfect distinctions.

Aside from assessors that make perfect distinctions, scores will not “mean” the
same thing for all groups; there will be bias against some group. In large
populations, perfect distinctions is very difficult to achieve—not as difficult as
perfect assessment, but difficult nonetheless.
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Two Objections

1. We might consider satisfying certain fairness constraints approximately
rather than exactly. That is, we could confine the amount of bias to which
any group is subject to a certain margin of tolerance.
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Two Objections

1. We might consider satisfying certain fairness constraints approximately
rather than exactly. That is, we could confine the amount of bias to which
any group is subject to a certain margin of tolerance.

2. One might be inclined to think that, while (a particular type of) unbiased
assessment for multiple partitions is often desirable, we have overshot the
mark by requiring it for all partitions.
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There are simple examples of populations that allow for a imperfect assessor that
is simultaneously calibrated for, say, two different non-trivial ways of partitioning
the population.
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Calibration Across 2 Groups

Let N ={1,2,3,4,5,6}, and let Y (i) =1 for i = 1,5,6. Consider the following
two partitions

1. {B,W} = {{1,2,4},{3,5,6}} and
2. {M,F} =1{{1,2,3},{4,56}}
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Calibration Across 2 Groups
Let N ={1,2,3,4,5,6}, and let Y (i) =1 for i = 1,5,6. Consider the following
two partitions
1. {B,W} = {{1,2,4},{3,5,6}} and
2. {M, F} ={{1,2,3},{4,5,6}}

B w
M | h(1*) =% h(2) =0 h(3) =3
F h(4) =} h(5%) = 3. h(6%) = 1

h is calibrated across {M, F} and across {B, W}.
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No Calibration Across Groups
Suppose N = {1,2,3} with Y(1) = Y(3) =1 and Y(2) = 0:

B W

M1 2

F | 3"
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No Calibration Across Groups
Suppose N = {1,2,3} with Y(1) = Y(3) =1 and Y(2) = 0:

B W
M1 2
F |3

» Supposing that h is imperfect and calibrated for the {M, F} partition of N
implies that individual 1 must receive a score in (0, 1).

» The only such assessment consistent with calibration is h(1) = h(2) = 1/2.

» But then h cannot calibrated for B since, by calibration for F, h(3) = 1.

» Similarly, h cannot be calibrated for W since Py/(Y =1 | h=1/2) #1/2.
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